This false-color infrared image shows clouds of large ammonia ice particles dredged up by the powerful storm. Credit: Cassini. [more]
Cassini's radio and plasma wave science instrument first detected the large disturbance in December 2010, and amateur astronomers have been watching it ever since through backyard telescopes. As it rapidly expanded, the storm's core developed into a giant, powerful thunderstorm, producing a 3,000-mile-wide (5,000-kilometer-wide) dark vortex possibly similar to Jupiter's Great Red Spot.
This is the first major storm on Saturn observed by an orbiting spacecraft and studied at thermal infrared wavelengths. Infrared observations are key because heat tells researchers a great deal about conditions inside the storm, including temperatures, winds, and atmospheric composition. Temperature data were provided by the Very Large Telescope (VLT) on Cerro Paranal in Chile and Cassini's composite infrared spectrometer (CIRS), operated by NASA's Goddard Space Flight Center in Greenbelt, Md.
"Our new observations show that the storm had a major effect on the atmosphere, transporting energy and material over great distances -- creating meandering jet streams and forming giant vortices -- and disrupting Saturn's seasonal [weather patterns]," said Glenn Orton, a paper co-author, based at NASA's Jet Propulsion Laboratory in Pasadena, Calif.
The violence of the storm -- the strongest disturbances ever detected in Saturn's stratosphere -- took researchers by surprise. What started as an ordinary disturbance deep in Saturn's atmosphere punched through the planet's serene cloud cover to roil the high layer known as the stratosphere.